Life of Sred
 Linear OAlgebra
 Eixpanded EDdition

Stanley F. Schmidt, Ph.D.

PD

Polka Dot Publishing

At Ploce to Classroom Students and Ofutodidacts

In calculus, there was essentially one new idea. It was the idea of the limit of a function. Using that idea, we defined the derivative and the definite integral. And then we played with that idea for two years of calculus.

In linear algebra, we dip back into high school algebra and begin with the idea of solving a system of linear equations like

$$
\left\{\begin{array}{l}
3 x+4 y=18 \\
2 x+5 y=19
\end{array}\right.
$$

and for two or three hours on a Saturday while Fred goes on a picnic, we will play with that idea.
\checkmark We can change the variables: $\left\{\begin{array}{l}3 x_{1}+4 x_{2}=18 \\ 2 x_{1}+5 x_{2}=19\end{array}\right.$
\checkmark We can consider three equations and three unknowns.
\checkmark We can look at the coefficient matrix $\left(\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right)$
\checkmark We can consider the case in which the system has exactly one solution (Chapter 1), or when it has many solutions (Chapter 2), or when it has no solution (Chapter 3).
\checkmark Etc.

Of course, the "Etc." covers all the new stuff such as model functions, orthogonal complements, and vector spaces. But they are all just ideas that you might encounter in the Kansas sunshine as you went on a picnic.

Enjoy!

of OVate to Teachers

Is there some law that math textbooks have to be dreadfully serious and dull? Is there a law that students must be marched through linear algebra shouting out the cadence count Definition, Theorem and Proof, Definition, Theorem and Proof, Definition, Theorem and Proof, Definition, Theorem and Proof, as if they were in the army. If there are such laws, then Life of Fred: Linear Algebra is highly illegal.

Besides being illegal, this book is also fattening. Instead of heading outside and going skateboarding, your students will be tempted to curl up with this textbook and read it. In 368 pages, they will read how Fred spent three hours on a Saturday picnic with a couple of his friends. I think that Mary Poppins was right: a spoonful of sugar can make life a little more pleasant.

So your students will be fat and illegally happy.
But what about you, the teacher? Think of it this way: If your students are eagerly reading about linear algebra, your work is made easier. You can spend more time skateboarding!

This book contains linear algebra-lots of it. All the standard topics are included. A good solid course stands admixed with the fun.

At the end of every chapter are six sets of problems giving the students plenty of practice. Some are easy, and some are like:

If $\mathrm{T}, \mathrm{T}^{\prime} \in \operatorname{Hom}(\nu, V)$, and if TT^{\prime} is the identity homomorphism, then prove that $\mathrm{T}^{\prime} \mathrm{T}$ is also the identity homomorphism.

Life of Fred: Linear Algebra also has a logical structure that will make sense to students. The best teaching builds on what the student already knows. In high school algebra they (supposedly) learned how to solve systems of linear equations by several different methods.

The four chapters that form the backbone of this book all deal with systems of linear equations:

Chapter 1—Systems with Exactly One Solution
Chapter 2-Systems with Many Solutions
Chapter 3-Systems with No Solution
Chapter 4-Systems Evolving over Time
These chapters allow the students to get their mental meat hooks into the less theoretical material.

Then in the interlarded Chapters ($1^{11 / 2}, 2^{1 ⁄ 2}, 2^{3 / 4}, 3^{1 ⁄ 2}$) we build on that foundation as we ascend into the more abstract topics of vector spaces, inner product spaces, etc.

Lastly, your students will love you even before they meet you. They will shout for joy in the bookstore when they discover you have adopted a linear algebra textbook that costs only $\$ 52$.

Contents

Chapter 1 Systems of Equations with One Solution 13
high school algebra, three equations with three unknowns coefficient and augmented matrices elementary row operations Gauss-Jordan elimination
Gaussian elimination
Chapter $11 / 2$ Matrices 48
matrix addition $\mathrm{A}+\mathrm{B}$ scalar multiplication rA matrix multiplication $A B$ matrix inverse A^{-1} proof of associative law of matrix multiplication $(A B) C=A(B C)$ elementary matrices $L U$-decomposition permutation matrices
Chapter 2 Systems of Equations with Many Solutions 92
four difficulties with Gauss-Jordan elimination \#1: a zero on the diagonal \#2: zeros "looking south"
zeros "looking east" \#4: a row with all zeros except for the last column
free variables
echelon and reduced row-echelon matrices
general solutions
homogeneous systems
rank of a matrix
Chapter 2½ Vector Spaces. 127
four properties of vector addition a very short course in abstract algebra four properties of scalar multiplication five vector spaces linear combinations and spanning sets linear dependence/independence basis for a vector space coordinates with respect to a basis dimension of a vector space subspace of a vector space row space, column space, null space, and nullity
Chapter 23¹4 Inner Product Spaces 197
dot product
inner product positive-definiteness
length of a vector (norm of a vector) angle between two vectors perpendicular vectors (orthogonality)
Gram-Schmidt orthogonalization process orthonormal sets
Fourier series
harmonic analysis
double Fourier series
complex vector spaces with an inner product
orthogonal complements
Chapter 3 Systems of Equations with No Solution. 232
overdetermined/underdetermined systems
discrete/continuous variables the normal equation/"the best possible answer" least squares solution data fitting
model functions
Chapter 3½ Linear Transformations. 259
rotation, reflection, dilation, projection, derivatives, matrix multiplication linear transformations, linear mappings, vector space homomorphisms linear operators ordered bases
zero transformation, identity transformation the equivalence of linear transformations and matrix multiplication
$\operatorname{Hom}(V, W)$
linear functionals dual spaces second dual of V.
Chapter 4 Systems of Equations into the Future A^{100} 304
transition matrix
determinants
characteristic polynomial/characteristic equationeigenvaluesalgebraic multiplicity/geometric multiplicitycomputation of A^{100}stochastic matricesMarkov chainssteady state vectorsregular matricesabsorbing states
similar matrices
systems of linear differential equations
Fibonacci numbers
computer programs for linear algebra
Index. 363

Chapter One
 Systems of Equations with One Solution
 $\mathrm{Ax}=\mathrm{b}$ ©

Fred had never really been on a lot of picnics in his life. Today was special. Today at noon he was going to meet his two best friends, Betty and Alexander, on the Great Lawn on campus, and they were going to have a picnic.

One good thing about being at KITTENS University* is that just about everything imaginable is either on campus or nearby.

Wait! Stop! I, your loyal reader, need to interrupt. In your old

 age, dear author, you're getting lind of foggy-brained.What do you mean?
I'm reading this stuff very carefully, since it's a math books and I have to paly attention to every word. Isn't it obvious that hITTERS would have "just about everything imaginable . . ." since you are doing the imagining?

Good point. I spoke the truth and plead as John Peter Zenger pleaded.**

I accept. Please go on with your story.
Thank you.
Fred knew that food is one important part of a picnic. He picked up the local newspaper and read . . .

[^0]
THE אITTENCaboodle

PICNIC MANIA THE NEW RAGE

KANSAS: A new fad is sweeping the country. Everyone is going on picnics. This was announced last night on television.

News of this great surge in popularity has taken the country by surprise.

"We must picnic," our university president declared in an exclusive Caboodle interview. (continued on p. 24) No one here at the Caboodle news center knew picnicking was popular, much less that it was the newest craze. (continued on p. 31)

Butter Bottom Foods

If you're new to picnicking,
there's nothing that beats our . . .

"It's always a better buy at Butter Bottom! "'sm

Perfect! thought Fred. I'm sure that Butter Bottom's Sack-oPionic Food will do the trick. I don't want to disappoint Betty and Alexander.

In a jiffy, ${ }^{*}$ Fred walked to Butter Bottom Foods. And there at the front of the store was a Sack-o-Picnic Food display.

[^1]

Wow! Fred thought. They sure make it easy. All I gotta do is choose a sack, and I'm ready to head off to see Alexander and Betty.

Fred was curious. He opened the first sack and looked inside. There were a can, five bottles, and three jars.

He took out the can . . . a bottle . . . and a jar.

In the first sack, one can, five bottles, and three jars cost $\$ 2.65$.

$$
c+5 b+3 j=2.65
$$

Fred knew That's not enough to tell $m \in$ what each of the items cost.

He opened the second sack. Two cans, 3 bottles, and 4 jars.

$$
2 c+3 b+4 j=2.75
$$

The third sack: Five cans, 32 bottles, and 3 jars. Wow. That's a lot of Sluice!

$$
5 c+32 b+3 j=10.20
$$

With three equations and three unknowns, Fred could use his high school algebra and solve this system of equations:

$$
\left\{\begin{array}{c}
c+5 b+3 j=2.65 \\
2 c+3 b+4 j=2.75 \\
5 c+32 b+3 j=10.20
\end{array}\right.
$$

In high school algebra, we were often more comfortable using x, y, and z :

$$
\left\{\begin{array}{c}
x+5 y+3 z=2.65 \\
2 x+3 y+4 z=2.75 \\
5 x+32 y+3 z=10.20
\end{array}\right.
$$

Intermission

Do your eyes begin to glaze over when you see lines of equations? In other words: Are you normal?

Unfortunately, much of linear algebra is about solving systems of linear equations like those above. This book has four main chapters. The first three chapters deal directly with solving systems of linear equations:

Chapter 1: Systems with One Solution Chapter 2: Systems with Many Solutions Chapter 3: Systems with No Solution.

The crux of the matter is that systems of linear equations keep popping up all the time, especially in scientific, business, and engineering situations.

Who knows? Maybe even in your love life systems of linear equations might be waiting right around the corner as you figure the cost of 6 pizzas, 2 violinists, and 3 buckets of flowers.

On the next page is a Gour Guinta Play. Even though this is the $27^{\text {th }}$ book in the Life of Fred series, the Gour Guin lo Play might be new to some readers. Let me explain what's coming.

I, as your reader, would appreciate that. I hate surprises.

Psychologists say that the best way to really learn something is to be personally involved in the process. The Gour Gum la Play sections give you that opportunity.

The most important point is that you honestly attempt to answer each of the questions before you look at the solutions. Please, please with sugar on it.

Gour Furnta PPlay

1. We might as well start off with the eyes-glaze-over stuff. Pull out your old high school algebra book if you need it. Solve

$$
\left\{\begin{aligned}
c+5 b+3 j & =2.65 \\
2 c+3 b+4 j & =2.75 \\
5 c+32 b+3 j & =10.20
\end{aligned}\right.
$$

by the "elimination method." (The other two methods that you may have learned are the substitution method-which works best with two equations and two unknowns-and the graphing method-which, in this case, would involve drawing three planes on the $x-y-z$ axes and trying to determine the point of intersection.)
2. Since this is linear algebra, we will be solving linear equations. Which of these equations are linear?

$$
\begin{aligned}
& 9 x+3 y^{2}=2 \\
& 3 x+2 x y=47 \\
& 7 \sin x+3 y=-8 \\
& 5 \sqrt{x}=36
\end{aligned}
$$

3. Sometimes linear equations might have four variables. Then they might be written $3 \mathrm{w}+2 \mathrm{x}+898 \mathrm{y}-5 \mathrm{z}=7$.

But what about in the business world? In your fountain pen factory, there might be 26 different varieties of pens. Then your linear equation might look like: $2 \mathrm{a}+6 \mathrm{~b}+8 \mathrm{c}+9 \mathrm{~d}-3 \mathrm{e}-\mathrm{f}+2 \mathrm{~g}+14 \mathrm{~h}+4 \mathrm{i}-3 \mathrm{j}+2 \mathrm{k}-111+3 \mathrm{~m}+8 \mathrm{n}+20 \mathrm{o}+5 \mathrm{p}+2 \mathrm{q}+$ $3 \mathrm{r}+9 \mathrm{~s}+2 \mathrm{t}+99 \mathrm{u}+3 \mathrm{v}+8 \mathrm{w}+8 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=98723$. Even then, we might get into a little trouble with the 111 (eleven "el") term or the 20 (twenty "oh") term.

If you are in real estate, and there are 40 variables involved in determining the price of a house (e.g., number of bedrooms, size of the lot, age of the house), you could stick in some of the Greek letters you learned in trig: $2 \mathrm{a}+6 \mathrm{~b}+8 \mathrm{c}+9 \mathrm{~d}-3 \mathrm{e}-\mathrm{f}+2 \mathrm{~g}+\ldots+8 \mathrm{w}+8 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+$ $66 \alpha-5 \beta+2 \gamma+\ldots=\$ 384,280$.

If you are running an oil refinery, there might be a hundred equations. Then you might dip into the Hebrew alphabet (צ צ צ) and the Cyrillic alphabet (Д, Ж, И).

One of the major thrusts of linear algebra is to make your life easier. Certainly, $6 x+5 y-9 Д+2 \xi=3$ doesn't look like the way to go.

Can you think of a way out of this mess?
4. How many solutions does $x+y=15$ have?
5. [Primarily for English majors] What's wrong with the definition: "A linear equation is any equation of the form $a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=b$ where the a_{i} (for $\mathrm{i}=1$ to n) and the b are real numbers and n is a natural number'?

Recall, the natural numbers are $\{1,2,3, \ldots\}$ and they are often abbreviated by the symbol \mathbb{N}.

COMPLETESOLUTIONS

1. Now I hope that you hauled out a sheet of paper and attempted this problem before looking here. I know it's easier to just look at my answers than to do it for yourself.

And it's easier to eat that extra slice of pizza than to diet.
And it's easier to cheat on your lover than to remain faithful.
And it's easier to sit around than to do huffy-puffy exercise.
But easier can make you fat, divorced, and flabby.
My solution may be different than yours since there are several ways to attack the problem. However, our final answers should match.

I'm going to use x, y, and z instead of c, b, and j . The letter x will stand for the cost of one can of Picnic Rice ${ }^{\mathrm{TM}}$, y will stand for the cost of one bottle of Sluice ${ }^{\mathrm{TM}}$, and z will stand for the cost of a jar of mustard.

$$
\left\{\begin{array}{c}
x+5 y+3 z=2.65 \\
2 x+3 y+4 z=2.75 \\
5 x+32 y+3 z=10.20
\end{array}\right.
$$

If I take the first two equations, multiply the first one by -2 , and add them together I get

$$
-7 y-2 z=-2.55
$$

If I take the first and third equations, multiply the first one by -5 , and add them together I get

$$
7 y-12 z=-3.05
$$

Now I have two equations in two unknowns. If I add them together I get one equation in one unknown

$$
-14 z=-5.60
$$

so $\mathrm{z}=0.40$ (which means that a jar of mustard costs $40 \Varangle$).

The last part of the process is to back-substitute. Putting $\mathrm{z}=0.40$ into

$$
\begin{array}{ll}
& 7 y-12 z=-3.05 \\
\text { we get } & 7 y-12(0.40)=-3.05
\end{array}
$$

so $\mathrm{y}=0.25$ (which means that a bottle of Sluice costs 25 ().

Back-substituting $\mathrm{z}=0.40$ and $\mathrm{y}=0.25$ into any one of the three original equations, will give $x=0.20$ (so a can of Picnic Rice costs $20 \Varangle$). This may be the last time you ever have to work with all those x's, y's, and z's (unless, of course, you become a high school math teacher). As we progress in linear algebra, the process of solving systems of linear equations will become easier and easier. Otherwise, why in the world would we be studying this stuff?
2.

$$
\begin{array}{ll}
9 x+3 y^{2}=2 & \text { is not linear because of the } y^{2} \\
3 x+2 x y=47 & \text { is not linear because of the } 2 x y \\
7 \sin x+3 y=-8 & \text { is not linear because of the } \sin x . \\
5 \sqrt{x}=36 & \text { is not linear because of the } \sqrt{x} .
\end{array}
$$

3. The place where we dealt with an arbitrarily large number of variables was in Life of Fred: Statistics, but you might not remember the Wilcoxon Signed Ranks Test in which we had a sample $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} . \ldots$ We used variables with subscripts. Now it doesn't make any difference whether we have three variables or 300.

And you'll never have to face $6 з-8 Э+2 \psi=98.3$ unless you really want to.

Sndex

a fortiori 292
a posteriori. 293
a priori 292
absorbing state 340
abstract algebra. 132
abelian group. 132
field 132
group 132
groupoid. 132
module. 135
monoid. 132
ring. 132
semigroup 132
algebraic multiplicity 321
augmented matrix 21
back-substitution. 19, 34
basis 164
best possible answer 237-239
binary operation 140
cancellation. 135, 136
catalog of linear transformations 269
characteristic equation 319
characteristic polynomial 319
characteristic value 333
characteristic vector 333
cheeses from A to C 175
Chop Down theorem 170
closed under addition 139
closed under vector addition and scalar multiplication174
coefficient matrix 21
column 23
column space 179
column-rank 182
complex conjugate 228
complex inner product space 228
computer programs for linear algebra 354
consistent systems of equations 114
contrapositive 107
converse. 107
conversion factors 314
coordinates of a vector with respect to a basis 166
Cramer's Rule. 311
data fitting. 243
determinants
$|\mathrm{AB}|=|\mathrm{A}| \mathrm{B} \mid$ 316
1×1 314
2×2. 311
3×3. 312
4×4 (or higher) 313
an overview 311-315,
317, 318
cofactor 313
expansion by minors. 312
hairnet 312
handy facts. 314,316
interchange any two rows 315
multiply a row by a scalar315
row of zeros. 315
upper triangular. 315

Ondex

diagonal. 24
diagonalize a matrix 330
differential equations 343, 344
boundary point conditions 346
general solution 346
initial conditions 346
particular solution 346
dimension of a matrix. 108
distinguished element 99
dot product. 199
double Fourier series 221
doubly-augmented matrix 31
dual space 282
echelon form. 99
eigenvalues 320
eigenvector 321
elementary column operations 179
elementary matrices. 70
elementary row operations 22
elimination method 17
even function. 202
Explosive theorem 181
Fibonacci numbers 350
Fill 'er Up theorem 171
fixed probability vector. 339
forward-substitution 78
Fourier series. 218-221
free variable. 98, 108
function 128, 300
codomain. 128
domain. 128
image 128
range 128
Gauss-Jordan elimination 22
how long it takes 35
Gaussian elimination 35
how long it takes. 35
general solution 101
geometric multiplicity. 327
Goldbach conjecture 253
golden ratio. 351
golden rectangle 351
Gram-Schmidt orthogonalization process 211-214
proof. 214, 215
Handy Facts (determinants) 314, 315
Handy Guide to Dating Systems of Linear Equations 110
hanging the vines 327
harmonic analysis 220
$\operatorname{Hom}(V, W)$. 278
homogeneous 104
\mathbf{i}, \mathbf{j}, and \mathbf{k}. 149
identity element. 66
identity matrix 62
identity transformation 270
iff. 66
infinite dimensional vector spaces 167
inner product. 201
of polynomials. 203, 204
of two continuous real-valued functions. 206, 207
inner product space 203
for complex scalars 228
of all $m \times n$ matrices 223-227

Ondex

inverse matrixto compute 62
to solve $\mathrm{Ax}=\mathrm{b}$ 61
inverses 107
invertible matrices. 121
isomorphic 143
Kronecker delta. 88
latent root. 333
latent vector. 333
leading variables. 99
least squares solution 239
linear combination 145, 146
linear equations. 17, 20
linear functional 281
linear mappings 262
linear operator. 262
linear transformation 261, 262
multiplying. 297
linearly dependent. 151
logically equivalent 107
lower triangular. 44
lower-upper matrix decomposition 75
LU-decomposition 75
Markov chain 336
matrix addition 50
definition 21
diagonal 88
equal matrices 63
expanded definition 49
identity matrix 62
inverse matrix 61
multiplication 54
reduced row-echelon 99
row-equivalent 65
singular 104, 105
subtraction. 82
transpose 96
matrix multiplication associative 65
associative (proof) 66-68
Mean Value Theorem 197
model function 246
mutatis mutandis 167
n-tuples 143
Nice theorem. 167
Nightmare \#1: There is a zero on the diagonal. 94
Nightmare \#2: Zeros all the way down 94
Nightmare \#3: Zeros to the right 95
Nightmare \#4: A row with all zeros except for the last column 96
Nine Steps to Compute a Power of a Matrix 319
algebraic multiplicity of two321
characteristic equation. 319
characteristic polynomial319
D. 329
diagonalize a matrix 330
eigenvalues 320
eigenvector 321
geometric multiplicity 327
P. 327

Ondex

"hanging the vines.". 327
nonsingular matrices. 121
norm of a vector. 206
normal equation. 235, 236
null space. 195
nullity. 195
ordered basis. 267
orthogonal complement. 231
orthogonal vectors. 209, 217
linearly independent. 211
parameter. 101
permutation matrix.. 82
perp. 231
pigeonhole principle.. 279
pivot variables. 99
positive matrix. 193
Positive-definiteness. 201
Prof. Eldwood's Authoritative Guide to the Polite Way... 72
Professor Eldwood's Guide to
Happy Picnics. 49
Professor Eldwood's History and What It's Good For. . . 38
Professor Eldwood's Inkbook
..................... . . 114
Professor Eldwood's Lions in the Great Woods of Kansas 305
projection. 265
proper value. 333
proper vector. 333
rank of a matrix. 105
equals number of pivot
\quad variables. 194
reduced row-echelon form
26, 27, 99
regular stochastic matrix. . . . 339
row........................... 21
row space. 178
row vectors are linearly dependent when-
-Handy Summary. 160
—New Quicker Summary. 162
row vectors span a space if-
—Handy Summary. 160
—New Quicker Summary. 162
scalar multiplication.
51, 128, 131, 134
scalars.. 51
second dual.. 287
similar matrices. 342
singleton.. 152
singular matrices. 105
span. 149, 150
spanning set. 150
stationary vector.. 339
steady state vector. 336
stochastic matrices. 336
regular. 339
subscriptsmanship. 58
subspace................... 173
subspace theorems. 174
trace of a matrix. 227
transition matrix.. 306
trivial solution. 161
underdetermined linear system
43
unit vectors. 217
unit-upper-triangular. 75

Index

upper triangular. 37
variables
continuous 235
discrete. 235
vector 32, 49, 128
angle between two vectors205
length 205
perpendicular 205
unit. 217
zero vector. 137
vector addition. 130
definition 131
vector space. 138
definition. 131, 172
vector space homomorphisms 262
well-defined operations 140
whole numbers 128
Zenger, John Peter 13
zero matrix 57
zero subspace 172
zero transformation. 269
zero vector space 190

[^0]: * KITTENS University. Kansas Institute for Teaching Technology, Engineering and Natural Sciences.

 Background information: Professor Fred Gauss has taught math there for over five years. He is now six years old. Betty and Alexander are students of his. They are both 21 .
 ** In his Weekly Journal, Zenger criticized the New York governor. Heavens! The government sent him to jail for libel. He had to wait ten months for his trial. At his trial in 1735 he was accused of promoting "an ill opinion of the government." Zenger's defense was that what he had written was true. The judge said that truth is no defense in a libel case. But the jury ignored the judge and set Zenger free. That marked a milestone in American law. Truth then became a legitimate defense in criminal libel suits in America after that trial. In England that idea did not catch on until the 1920s.

[^1]: * In a jiffy (or in a jiff) used to be a common expression meaning "in a very short period of time." Those fun-loving physicists have redefined a jiffy as the time it takes for light to travel the radius of an electron.

