Life of Fred® Linear Algebra Expanded Edition

Stanley F. Schmidt, Ph.D.

A Note to Classroom Students and Autodidacts

In calculus, there was essentially one new idea. It was the idea of the limit of a function. Using that idea, we defined the derivative and the definite integral. And then we played with that idea for two years of calculus.

In linear algebra, we dip back into high school algebra and begin with the idea of solving a system of linear equations like

$$\begin{cases} 3x + 4y = 18 \\ 2x + 5y = 19 \end{cases}$$

and for two or three hours on a Saturday while Fred goes on a picnic, we will play with that idea.

✓ We can change the variables:
$$\begin{cases} 3x_1 + 4x_2 = 18 \\ 2x_1 + 5x_2 = 19 \end{cases}$$

✓ We can consider three equations and three unknowns.

✓ We can look at the coefficient matrix
$$\begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$$

✓ We can consider the case in which the system has exactly one solution (Chapter 1), or when it has many solutions (Chapter 2), or when it has no solution (Chapter 3).

✓ Etc.

Of course, the "Etc." covers all the new stuff such as model functions, orthogonal complements, and vector spaces. But they are all just ideas that you might encounter in the Kansas sunshine as you went on a picnic.

Enjoy!

A Note to Teachers

s there some law that math textbooks have to be dreadfully serious and dull? Is there a law that students must be marched through linear algebra shouting out the cadence count Definition, Theorem and Proof,

Definition, Theorem and Proof.

Definition, Theorem and Proof,

Definition, Theorem and Proof, as if they were in the army. If there are such laws, then *Life of Fred: Linear Algebra* is highly illegal.

Besides being illegal, this book is also fattening. Instead of heading outside and going skateboarding, your students will be tempted to curl up with this textbook and read it. In 368 pages, they will read how Fred spent three hours on a Saturday picnic with a couple of his friends. I think that Mary Poppins was right: a spoonful of sugar can make life a little more pleasant.

So your students will be fat and illegally happy.

But what about you, the teacher? Think of it this way: *If your students are eagerly reading about linear algebra, your work is made easier. You can spend more time skateboarding!*

This book contains linear algebra—lots of it. All the standard topics are included. A good solid course stands admixed with the fun. At the end of every chapter are six sets of problems giving the

At the end of every chapter are six sets of problems giving the students plenty of practice. Some are easy, and some are like:

If T, T' \in Hom(\mathcal{V} , \mathcal{V}), and if TT' is the identity homomorphism, then prove that T'T is also the identity homomorphism.

Life of Fred: Linear Algebra also has a logical structure that will make sense to students. The best teaching builds on what the student already knows. In high school algebra they (supposedly) learned how to solve systems of linear equations by several different methods.

The four chapters that form the backbone of this book all deal with systems of linear equations:

Chapter 1—Systems with Exactly One Solution

Chapter 2—Systems with Many Solutions

Chapter 3—Systems with No Solution

Chapter 4—Systems Evolving over Time

These chapters allow the students to get their mental meat hooks into the less theoretical material.

Then in the interlarded Chapters (1½, 2½, 2¾, 3½) we build on that foundation as we ascend into the more abstract topics of vector spaces, inner product spaces, etc.

Lastly, your students will love you even before they meet you. They will shout for joy in the bookstore when they discover you have adopted a linear algebra textbook that costs only \$52.

Contents

Chapte	high school algebra, three equations with three unknowns coefficient and augmented matrices elementary row operations Gauss-Jordan elimination Gaussian elimination
Chapte	matrix addition A + B scalar multiplication rA matrix multiplication AB matrix inverse A ⁻¹ proof of associative law of matrix multiplication (AB)C = A(BC) elementary matrices LU-decomposition permutation matrices
Chapte	four difficulties with Gauss-Jordan elimination #1: a zero on the diagonal #2: zeros "looking south" #3: zeros "looking east" #4: a row with all zeros except for the last column free variables echelon and reduced row-echelon matrices general solutions homogeneous systems rank of a matrix
Chapte	four properties of vector addition a very short course in abstract algebra four properties of scalar multiplication five vector spaces linear combinations and spanning sets linear dependence/independence basis for a vector space coordinates with respect to a basis dimension of a vector space subspace of a vector space row space, column space, null space, and nullity

	dot product inner product positive-definiteness length of a vector (norm of a vector) angle between two vectors perpendicular vectors (orthogonality) Gram-Schmidt orthogonalization process orthonormal sets Fourier series harmonic analysis double Fourier series complex vector spaces with an inner product orthogonal complements
-	r 3 Systems of Equations with No Solution
	r $3\frac{1}{2}$ Linear Transformations
	r 4 Systems of Equations into the Future A ¹⁰⁰

Index.		 _		 _	 	_	_	_	 	_	_			_	 	_	_		_	_	_	_	 	_	_	_	_	 	3	6	3

Chapter One Systems of Equations with One Solution $Ax = b \ \odot$

red had never really been on a lot of picnics in his life. Today was special. Today at noon he was going to meet his two best friends, Betty and Alexander, on the Great Lawn on campus, and they were going to have a picnic.

One good thing about being at KITTENS University* is that just about everything imaginable is either on campus or nearby.

Wait! Stop! I, your loyal reader, need to interrupt. In your old age, dear author, you're getting kind of foggy-brained.

What do you mean?

I'm reading this stuff very carefully, since it's a math book and I have to pay attention to every word. Isn't it obvious that KITTENS would have "just about everything imaginable . . ." since you are doing the imagining?

Good point. I spoke the truth and plead as John Peter Zenger pleaded.**

I accept. Please go on with your story.

Thank you.

Fred knew that food is one important part of a picnic. He picked up the local newspaper and read . . .

★ KITTENS University. Kansas Institute for Teaching Technology, Engineering and Natural Sciences.

Background information: Professor Fred Gauss has taught math there for over five years. He is now six years old. Betty and Alexander are students of his. They are both 21.

** In his Weekly Journal, Zenger criticized the New York governor. Heavens! The government sent him to jail for libel. He had to wait ten months for his trial. At his trial in 1735 he was accused of promoting "an ill opinion of the government." Zenger's defense was that what he had written was true. The judge said that truth is no defense in a libel case. But the jury ignored the judge and set Zenger free. That marked a milestone in American law. Truth then became a legitimate defense in criminal libel suits in America after that trial. In England that idea did not catch on until the 1920s.

THE KITTEN Caboodle

The Official Campus Newspaper of KITTENS University

Saturday 11:02 a.m. Grocery Shopping Edition 104

PICNIC MANIA— THE NEW RAGE

KANSAS: A new fad is sweeping the country. Everyone is going on picnics. This was announced last night on television.

News of this great surge in popularity has taken the country by surprise. No one here at the Caboodle news center knew picnicking was popular, much less that it was the newest craze. (continued on p. 31)

"We must picnic," our university president declared in an exclusive Caboodle interview. (continued on p. 24)

We are now accepting for pawn all the stuff from previous manias:

Hula-Hoops™, things you stick in your ear to hear music, narrow neckties, leisure suits, laptops, ukeleles, raccoon coats, and overpriced real estate.

"Never fight the urge to pawn!" SM

--- advertisement ---**Butter Bottom Foods**

If you're new to picnicking, there's nothing that beats our . . .

"It's always a better buy at Butter Bottom!"SM

Perfect! thought Fred. I'm sure that Butter Bottom's Sack-o-Picnic Food will do the trick. I don't want to disappoint Betty and Alexander.

In a jiffy,* Fred walked to Butter Bottom Foods. And there at the front of the store was a Sack-o-Picnic Food display.

[★] In a jiffy (or in a jiff) used to be a common expression meaning "in a very short period of time." Those fun-loving physicists have redefined a jiffy as the time it takes for light to travel the radius of an electron.

Wow! Fred thought. They sure make it easy. All I gotta do is choose a sack, and I'm ready to head off to see Alexander and Betty.

Fred was curious. He opened the first sack and looked inside. There were a can, five bottles, and three jars.

He took out the can . . . a bottle . . . and a jar.

In the first sack, one can, five bottles, and three jars cost \$2.65. c + 5b + 3i = 2.65

Fred knew That's not enough to tell me what each of the items cost.

He opened the second sack. Two cans, 3 bottles, and 4 jars.

$$2c + 3b + 4j = 2.75$$

The third sack: Five cans, 32 bottles, and 3 jars. Wow. That's a lot of Sluicel

$$5c + 32b + 3j = 10.20$$

With three equations and three unknowns, Fred could use his high school algebra and solve this system of equations:

$$\begin{cases} c + 5b + 3j = 2.65 \\ 2c + 3b + 4j = 2.75 \\ 5c + 32b + 3j = 10.20 \end{cases}$$

In high school algebra, we were often more comfortable using x, y, and z:

$$\begin{cases} x + 5y + 3z = 2.65 \\ 2x + 3y + 4z = 2.75 \\ 5x + 32y + 3z = 10.20 \end{cases}$$

Intermission

Do your eyes begin to glaze over when you see lines of equations? In other words: Are you normal?

Unfortunately, much of linear algebra is about solving systems of linear equations like those above. This book has four main chapters. The first three chapters deal directly with solving systems of linear equations:

Chapter 1: Systems with One Solution Chapter 2: Systems with Many Solutions Chapter 3: Systems with No Solution.

The crux of the matter is that systems of linear equations keep popping up all the time, especially in scientific, business, and engineering situations.

Who knows? Maybe even in your love life systems of linear equations might be waiting right around the corner as you figure the cost of 6 pizzas, 2 violinists, and 3 buckets of flowers.

On the next page is a *Your Turn to Play*. Even though this is the 27th book in the *Life of Fred* series, the *Your Turn to Play* might be new to some readers. Let me explain what's coming.

I, as your reader, would appreciate that. I hate surprises.

Psychologists say that the best way to really learn something is to be personally involved in the process. The *Your Furn to Play* sections give you that opportunity.

The most important point is that you honestly attempt to answer each of the questions before you look at the solutions. Please, please, please, please, please, please, please, please, please, please with sugar on it.

Your Turn to Play

1. We might as well start off with the eyes-glaze-over stuff. Pull out your old high school algebra book if you need it. Solve

$$\begin{cases} c + 5b + 3j = 2.65 \\ 2c + 3b + 4j = 2.75 \\ 5c + 32b + 3j = 10.20 \end{cases}$$

by the "elimination method." (The other two methods that you may have learned are the substitution method—which works best with two equations and two unknowns—and the graphing method—which, in this case, would involve drawing three planes on the x-y-z axes and trying to determine the point of intersection.)

2. Since this is *linear* algebra, we will be solving *linear* equations. Which of these equations are linear?

$$9x + 3y^{2} = 2$$

 $3x + 2xy = 47$
 $7\sin x + 3y = -8$
 $5\sqrt{x} = 36$

3. Sometimes linear equations might have four variables. Then they might be written 3w + 2x + 898y - 5z = 7.

But what about in the business world? In your fountain pen factory, there might be 26 different varieties of pens. Then your linear equation might look like: 2a + 6b + 8c + 9d - 3e - f + 2g + 14h + 4i - 3j + 2k - 111 + 3m + 8n + 20o + 5p + 2q + 3e - 6b +3r + 9s + 2t + 99u + 3v + 8w + 8x - y + 2z = 98723. Even then, we might get into a little trouble with the 111 (eleven "el") term or the 200 (twenty "oh") term.

If you are in real estate, and there are 40 variables involved in determining the price of a house (e.g., number of bedrooms, size of the lot, age of the house), you could stick in some of the Greek letters you learned in trig: 2a + 6b + 8c + 9d - 3e - f + 2g + ... + 8w + 8x - y + 2z + $66\alpha - 5\beta + 2\gamma + \dots = $384,280.$

If you are running an oil refinery, there might be a hundred equations. Then you might dip into the Hebrew alphabet ($\mathfrak{Z} \subset \mathfrak{Z}$) and the Cyrillic alphabet ($\mathfrak{Z}, \mathfrak{X}, \mathfrak{U}$).

One of the major thrusts of linear algebra is to make your life easier. Certainly, $6x + 5y - 9 \ \text{H} + 2\xi = 3 \ \text{doesn't look like the way to go}$.

Can you think of a way out of this mess?

- 4. How many solutions does x + y = 15 have?
- 5. [Primarily for English majors] What's wrong with the definition: "A linear equation is any equation of the form $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$ where the a_i (for i = 1 to n) and the b are real numbers and n is a natural number"?

Recall, the natural numbers are $\{1, 2, 3, ...\}$ and they are often abbreviated by the symbol \mathbb{N} .

......COMPLETE SOLUTIONS......

1. Now I hope that you hauled out a sheet of paper and attempted this problem before looking here. I know it's *easier* to just look at my answers than to do it for yourself.

And it's easier to eat that extra slice of pizza than to diet.

And it's easier to cheat on your lover than to remain faithful.

And it's easier to sit around than to do huffy-puffy exercise.

But easier can make you fat, divorced, and flabby.

My solution may be different than yours since there are several ways to attack the problem. However, our final answers should match.

I'm going to use x, y, and z instead of c, b, and j. The letter x will stand for the cost of one can of Picnic RiceTM, y will stand for the cost of one bottle of SluiceTM, and z will stand for the cost of a jar of mustard.

$$\begin{cases} x + 5y + 3z = 2.65 \\ 2x + 3y + 4z = 2.75 \\ 5x + 32y + 3z = 10.20 \end{cases}$$

If I take the first two equations, multiply the first one by -2, and add them together I get

$$-7y - 2z = -2.55$$

If I take the first and third equations, multiply the first one by -5, and add them together I get

$$7y - 12z = -3.05$$

Now I have two equations in two unknowns. If I add them together I get one equation in one unknown

$$-14z = -5.60$$

so z = 0.40 (which means that a jar of mustard costs 40ϕ).

The last part of the process is to **back-substitute**. Putting z = 0.40 into

$$7y - 12z = -3.05$$

we get 7y - 12(0.40) = -3.05

so y = 0.25 (which means that a bottle of Sluice costs 25ϕ).

Back-substituting z = 0.40 and y = 0.25 into any one of the three original equations, will give x = 0.20 (so a can of Picnic Rice costs 20ϕ). This may be the last time you ever have to work with all those x's, y's, and z's (unless, of course, you become a high school math teacher). As we progress in linear algebra, the process of solving systems of linear equations will become easier and easier. Otherwise, why in the world would we be studying this stuff?

2.

 $9x + 3y^2 = 2$ is not linear because of the y^2 .

3x + 2xy = 47 is not linear because of the 2xy.

 $7\sin x + 3y = -8$ is not linear because of the $\sin x$.

 $5\sqrt{x} = 36$ is not linear because of the \sqrt{x} .

3. The place where we dealt with an arbitrarily large number of variables was in *Life of Fred: Statistics*, but you might not remember the Wilcoxon Signed Ranks Test in which we had a sample $x_1, x_2, x_3, x_4...$ We used variables with subscripts. Now it doesn't make any difference whether we have three variables or 300.

And you'll never have to face $6\mathbf{z} - 8\mathbf{9} + 2\mathbf{\psi} = 98.3$ unless you really want to.

202	170
a fortiori	column space
a posteriori	
a priori	complex conjugate228
absorbing state 340	complex inner product space
abstract algebra 132	228
abelian group 132	computer programs for linear
field132	algebra 354
group132	consistent systems of equations
groupoid 132	114
module	contrapositive107
monoid	converse 107
ring	conversion factors 314
semigroup	coordinates of a vector with
algebraic multiplicity 321	respect to a basis 166
augmented matrix21	Cramer's Rule 311
back-substitution 19, 34	data fitting 243
basis	determinants
	AB = A B 316
best possible answer 237-239	1×1314
binary operation	2×2
cancellation 135, 136	3×3 312
catalog of linear transformations	4×4 (or higher)
	an overview 311-315,
characteristic equation 319	317, 318
characteristic polynomial319	cofactor313
characteristic value333	expansion by minors312
characteristic vector 333	
cheeses from A to C175	hairnet
Chop Down theorem 170	handy facts 314, 316
closed under addition139	interchange any two rows
closed under vector addition and	
scalar multiplication	multiply a row by a scalar
174	315
coefficient matrix21	row of zeros
column	upper triangular315

diagonal 24	Gauss-Jordan elimination22
diagonalize a matrix330	how long it takes35
differential equations 343, 344	Gaussian elimination 35
boundary point conditions	how long it takes35
346	general solution 101
general solution346	geometric multiplicity 327
initial conditions346	Goldbach conjecture 253
particular solution346	golden ratio
dimension of a matrix 108	golden rectangle351
distinguished element99	Gram-Schmidt orthogonalization
dot product	process 211-214
double Fourier series 221	proof 214, 215
doubly-augmented matrix 31	Handy Facts (determinants)
dual space	314, 315
echelon form	Handy Guide to Dating Systems
eigenvalues320	of Linear Equations
eigenvector321	110
elementary column operations	hanging the vines 327
179	harmonic analysis220
elementary matrices70	$\operatorname{Hom}(\mathcal{V},\mathcal{W})$ 278
elementary row operations22	homogeneous104
elimination method 17	i , j , and k 149
even function 202	identity element 66
Explosive theorem 181	identity matrix 62
Fibonacci numbers350	identity transformation270
Fill 'er Up theorem171	iff
fixed probability vector 339	infinite dimensional vector
forward-substitution 78	spaces167
Fourier series 218-221	inner product 201
free variable 98, 108	of polynomials 203, 204
function 128, 300	of two continuous real-valued
codomain 128	functions 206, 207
domain 128	inner product space 203
image128	for complex scalars228
range128	of all m×n matrices223-227

inverse matrix	reduced row-echelon99
to compute 62	row-equivalent 65
to solve $Ax = b$	singular104, 105
inverses	subtraction 82
invertible matrices 121	transpose96
isomorphic143	matrix multiplication
Kronecker delta 88	associative65
latent root	associative (proof) 66-68
latent vector	Mean Value Theorem197
leading variables 99	model function246
least squares solution 239	mutatis mutandis 167
linear combination 145, 146	n-tuples143
linear equations 17, 20	Nice theorem 167
linear functional281	Nightmare #1: There is a zero on
linear mappings 262	the diagonal 94
linear operator 262	Nightmare #2: Zeros all the way
linear transformation 261, 262	down94
multiplying 297	Nightmare #3: Zeros to the right
linearly dependent 151	95
logically equivalent 107	Nightmare #4: A row with all
lower triangular 44	zeros except for the last
lower-upper matrix	column96
decomposition 75	Nine Steps to Compute a Power
LU-decomposition75	of a Matrix319
Markov chain	algebraic multiplicity of two
matrix	characteristic equation 319
addition50	characteristic polynomial
definition21	
diagonal88	D329
equal matrices63	diagonalize a matrix 330
expanded definition 49	eigenvalues320
identity matrix62	eigenvector
inverse matrix61	geometric multiplicity 327
multiplication 54	P
	1

"hanging the vines." 327	reduced row-echelon form
nonsingular matrices 121	26, 27, 99
norm of a vector206	regular stochastic matrix 339
normal equation 235, 236	row21
null space 195	row space 178
nullity	row vectors are linearly
ordered basis	dependent when—
orthogonal complement 231	—Handy Summary 160
orthogonal vectors 209, 217	—New Quicker Summary.162
linearly independent 211	row vectors span a space if—
parameter101	—Handy Summary 160
permutation matrix82	—New Quicker Summary.162
perp	scalar multiplication
pigeonhole principle279	51, 128, 131, 134
pivot variables	scalars51
positive matrix 193	second dual287
Positive-definiteness 201	similar matrices 342
Prof. Eldwood's <i>Authoritative</i>	singleton152
Guide to the Polite Way	singular matrices 105
	span 149, 150
Professor Eldwood's Guide to	spanning set 150
Happy Picnics 49	stationary vector339
Professor Eldwood's History and	steady state vector 336
What It's Good For 38	stochastic matrices336
Professor Eldwood's Inkbook	regular339
114	subscriptsmanship 58
Professor Eldwood's <i>Lions in the</i>	subspace173
Great Woods of Kansas	subspace theorems 174
305	trace of a matrix227
projection	transition matrix306
proper value	trivial solution 161
proper vector	underdetermined linear system
rank of a matrix 105	43
equals number of pivot	unit vectors
variables194	unit-upper-triangular 75

upper triangular 37
variables
continuous
discrete
vector
angle between two vectors
205
length 205
perpendicular 205
unit 217
zero vector 137
vector addition 130
definition
vector space
definition
vector space homomorphisms
well-defined operations 140
whole numbers128
Zenger, John Peter 13
zero matrix
zero subspace
zero transformation 269
zero vector space 190